485 research outputs found

    The Molecular Mechanism of Monolayer Scission

    Get PDF

    Carbon capture and storage:Making fossil fuels great again?

    Get PDF
    At present, Carbon Capture and Storage, in which CO2 is captured from flue gasses and stored in geological formations, is one of the technologies to reduce CO2 emissions associated with the use of fossil fuels. Are there some good arguments to continue to invest in fossil fuels, a technology of yesterday

    The order-disorder transition in model lipid bilayers is a first-order hexatic to liquid phase transition

    Full text link
    We characterize the order-disorder transition in a model lipid bilayer using molecular dynamics simulations. We find that the ordered phase is hexatic. In particular, in-plane structures possess a finite concentration of 5-7 disclination pairs that diffuse throughout the plane of the bilayer, and further, in-plane structures exhibit long-range orientational order and short-range translational order. In contrast, the disordered phase is liquid. The transition between the two phases is first order. Specifically, it exhibits hysteresis, and coexistence exhibits an interface with capillary scaling. The location of the interface and its spatial fluctuations are analyzed with a spatial field constructed from a rotational-invariant for local 6-fold orientational order. As a result of finite interfacial tension, there necessarily exist associated forces of assembly between membrane-bound solutes that pre-melt the ordered phase.Comment: Addressed the comments from colleagues, corrected typos, clarified text, updated references. The new draft also contains new results relating to the hexatic phas

    Simulating Induced Interdigitation in Membranes

    Get PDF
    AbstractIn this study we introduce a mesoscopic lipid-water-alcohol model. Dissipative particle dynamics (DPD) simulations have been used to investigate the induced interdigitation of bilayers consisting of double-tail lipids by adding alcohol molecules to the bilayer. Our simulations nicely reproduce the experimental phase diagrams. We find that alcohol can induce an interdigitated structure where the common bilayer structure changes into monolayer in which the alcohol molecules screen the hydrophobic tails from the water phase. At low concentrations of alcohol the membrane has domains of the interdigitated phase that are in coexistence with the common membrane phase. We compute the effect of the chain length of the alcohol on the phase behavior of the membrane and show that the stability of the interdigitated phase depends on the length of the alcohol. We show that we can reproduce the experimental hydrophobic thickness of the bilayer for various combinations of lipids and alcohols. We use our model to clarify some of the experimental questions related to the structure of the interdigitated phase and put forward a simple model that explains the alcohol chain length dependence of the stability of this interdigitated phase

    Improving the Mechanical Stability of Metal-Organic Frameworks Using Chemical Caryatids

    Get PDF
    Metal–organic frameworks (MOFs) have emerged as versatile materials for applications ranging from gas separation and storage, catalysis, and sensing. The attractive feature of MOFs is that, by changing the ligand and/or metal, they can be chemically tuned to perform optimally for a given application. In most, if not all, of these applications one also needs a material that has a sufficient mechanical stability, but our understanding of how changes in the chemical structure influence mechanical stability is limited. In this work, we rationalize how the mechanical properties of MOFs are related to framework bonding topology and ligand structure. We illustrate that the functional groups on the organic ligands can either enhance the mechanical stability through formation of a secondary network of nonbonded interactions or soften the material by destabilizing the bonded network of a MOF. In addition, we show that synergistic effect of the bonding network of the material and the secondary network is required to achieve optimal mechanical stability of a MOF. The developed molecular insights in this work can be used for systematic improvement of the mechanical stability of the materials by careful selection of the functional groups
    • …
    corecore